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● Jan Wiesbauer | 28 | Linz
● Software Engineer at Tractive
○ Internal-Tooling team
○ you build it - you own it

About myself
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Deployments 
@ Tractive
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Deployment process -
Manufacturing System



Deployments
from user 
perspective
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● Manufacturing partners in Asia •

Time constraints of deployments

● Warehouse in Linz •
● Deployments before EOB •
● Manufacturing partners in Europe •
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● Users should not be disrupted by 
deployment

● Devs should be able to deploy often 
and on demand

We need zero downtime…
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● Service should be highly available
● Service can be scaled horizontally

We need zero downtime…
… and multiple instances
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Solution
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● “Recreate”
● Change to “Rolling update”

Adapt Deployment strategy

Instance A Instance B

✅ ��✅⛔
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Sounds simple
right…?
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● Some state in process memory
● Can diverge
○ → inconsistencies
○ → nondeterministic results

But our service is stateful…
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Turning service 
stateless
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Setup
AWS Elastic Container Service

Spring Boot service

MySQL
External services

MongoDB

REST

RabbitMQ

REST



17

● User sessions
● Caching
● Locks

Stateful aspects of our service
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● Sessions are stored in process memory

User sessions - Problem

Instance A

Session

Instance B

✅

● Subsequent calls to different instances fail

⛔
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● Sync sessions across instances
● Sticky sessions on infrastructure layer
● JWT tokens

User sessions - Solutions
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● Sync sessions across instances
● Stored in Redis

User sessions - Decision

● Pros:
○ Sessions still exist after deployment
○ Adaptations closer to service
○ Strict control over access
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User sessions - Implementation

spring:
session:

      store-type: redis
   data:
      redis:
         host: —--
         password: —--
         port: —--

runtimeOnly("org.springframework.session:spring-session-data-redis")
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● Straightforward implementation
● No noticeable performance drawback
● One of the most visible changes for 

users

User sessions - Conclusion
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● Data cached in process memory
● Can diverge
● Instances work on different “versions” 

of the data

Caching - Problems
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● Distributed cache
● Stored in Redis

Caching - Solution

● Also keep some in memory caches
○ “Cold” or immutable data
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Caching - Implementation

@Service
class ShipmentCreationService(

private val cache: Cache,
) {

val alreadySyncedOrderIds by cache {
   fetchAlreadySyncedOrderIds()
}

…
}
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Caching - Implementation

@Service
class ServiceA(
   @InMemoryCache
   val inMemoryCache: Cache,
) {…}

@Service
class ServiceB(
   @RemoteCache
   private val remoteCache: Cache,
) {…}

@Qualifier
annotation class InMemoryCache
@Qualifier
annotation class RemoteCacheManager



28

● Required some configuration code
○ But simple to use and replace

● Large objects can take long to retrieve
● Highly frequently accessed data can 

decrease performance
● Backwards compatibility

Caching - Conclusion
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● Prevent that a resource is processed 
concurrently
○ Shipment packing at Warehouse

● Or specific logic/service is executed 
concurrently

Locks - Motivation
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● Locks are stored in process memory
● Other instances would not know about
● Whole point of locks is lost

Locks - Problems
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● Sync Locks across instances
● Stored in Redis

Locks - Solution
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Locks - Implementation
fun <T> withRedissonLock(
   lockKey: String,
   action: () -> T,
): T {
   redissonClient.getFairLock(lockKey).run {
       try {
           lock()
           return action()
       } finally {

 unlock()
       }
   }
}
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Locks - Implementation
fun <T> withRedissonLockIfAvailableOrThrow(
   lockKey: String,
   action: () -> T,
): T {
   redissonClient.getFairLock(lockKey).run {
       try {
           val lockAcquired = tryLock()

           if (lockAcquired) {
               return action()
           } else {
               throw LockNotAcquiredException(lockKey)
           }
       } finally {...}
   }
}
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Locks - Implementation

interface LockService {
   fun <T> runWithLock(lockKey: String, action: () -> T)

: Result<T>

   fun <T> runIfKeyNotLocked(lockKey: String, action: () -> T)
: Result<T>

   fun extendObjectLock(objectId: ObjectId, pattern: String)

   fun getLockedObjectIds(pattern: String): Set<ObjectId>
}
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Locks - Implementation

fun createShipmentsForRequestsWithoutErrorsInBulk() =
   createShipmentsInBulkLockService.withServiceLock {
       val pendingShipmentRequestsWithoutErrors =

    findOpenShipmentRequests()
               .filter { it.errors.isEmpty() }

       createShipmentsInBulk(pendingShipmentRequestsWithoutErrors)
   }
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Locks - Implementation

fun findPendingShipments(): List<ShipmentDto> {
val lockedShipmentIds =      
    shipmentLockService.getLockedObjectIds(SHIPMENT_LOCK_PATTERN)

return shipmentRepository
   .findAllByStatus(ShipmentStatus.PENDING)
   .filter { shipment -> shipment.id !in lockedShipmentIds }

}
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● Required more custom implementation
● You should only lock keys and not objects
● No noticeable performance drawback

Locks - Conclusion
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05
Additional topics to 
consider
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● Scheduled jobs
● REST communication
● AMQP messaging
● Backwards compatibility
● Graceful shutdown

Additional topics
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● Batch jobs processing large sets of data
● Concurrent executions → could cause 

inconsistencies

Scheduled jobs
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● Locking the jobs
● Stored in MongoDB using “ShedLock” 1

Scheduled jobs - Solution

1  https://github.com/lukas-krecan/ShedLock
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Scheduled jobs - Implementation

@Bean
fun mongoSchedulerLockProvider(mongoTemplate: MongoTemplate):LockProvider {
   return MongoLockProvider(mongoTemplate.db)
}

implementation("net.javacrumbs.shedlock:shedlock-spring")
runtimeOnly("net.javacrumbs.shedlock:shedlock-provider-mongo")

@Scheduled(fixedDelay = 5, timeUnit = TimeUnit.MINUTES)
@SchedulerLock(name = "SYNC_ORDERS_JOB", lockAtMostFor = "PT20M")
public void syncOrders() {...}
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Scheduled jobs - Implementation

{
 "_id": "SHOP_SYNC_JOB",
 "lockUntil": {
   "$date": "2025-02-13T14:32:47.6189Z"
 },
 "lockedAt": {
   "$date": "2025-02-13T14:30:11.658Z"
 },
 "lockedBy": "ip-10-0-0-26.eu-central-1.compute.internal"
}

Example
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● Straightforward implementation
● Job lock can be used to suspend jobs
● Config needs proper setup and 

monitoring
○ lockAtMostFor

Scheduled jobs - Conclusion
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● Single entry point for users
● Load Balancer
○ capable of routing traffic to 

different instances

REST Load balancing / routing
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● Publisher/Subscribe vs. 
Producer/Consumer

● Message delivery to one or all 
instances?

AMQP messaging models
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● Rest APIs
● Persistence layer schema

Backwards compatibility
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● Allow old services to finish ongoing 
operations gracefully

● Reduces the risk of inconsistencies

Graceful shutdown



49

Graceful shutdown - 
Implementation

server:
   shutdown: graceful
   lifecycle:
       timeout-per-shutdown-phase: 10m
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● ECS propagates shutdown signal to 
containers

● Spring service receives and initiates 
shutdown

● ECS will wait until service reports 
successful shutdown

Graceful shutdown - Flow
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Testing
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● Simulate traffic throughout deployment
● With load testing tool “vegeta” 1

Testing

1  https://github.com/tsenart/vegeta
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Testing - Usage

Requests      [total, rate, throughput]      50, 5.10, 5.05
Duration      [total, attack, wait]          9.903s, 9.801s, 102.142ms
Latencies     [min, mean, max]               96.819ms, 108.504ms, 313.981ms
Bytes In      [total, mean]                  840913, 16818.26
Bytes Out     [total, mean]                  0, 0.00
Success       [ratio]                        80.00%
Status Codes  [code:count]                   200:40, 503:10   
Error Set:

echo "GET https://example.com" \
  | vegeta attack -rate=5/s -duration=10s \
  | vegeta report
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https://docs.google.com/file/d/1RZ4FZoWxzIGPeJzEXCQ67GlG6UUHjBjk/preview
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Impact
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● No interruptions for users
● Deployments convenient for devs
● Shorter “Time-to-Production” of 

features and fixes
● Fewer inconsistencies and errors

Positive impact
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● Required backwards compatibility 
complicates implementations

● Infrastructure costs

Negative impact
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Outlook
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● Extend approach to other internal services
● Split up “API-Service” and “Job-Runner”
○ individual deployment strategies
○ individual resources & scaling

Outlook
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Now it’s the perfect 
time to raise your hand 
and ask a question if 
you have one.

61

Q&A


