
Crafting Zero-Downtime
Experiences with Stateless
Services

Deploy without
Disruption

4

● Jan Wiesbauer | 28 | Linz
● Software Engineer at Tractive
○ Internal-Tooling team
○ you build it - you own it

About myself

5

02
Deployments
@ Tractive

6

Deployment process -
Manufacturing System

Deployments
from user
perspective

7

8

● Manufacturing partners in Asia •

Time constraints of deployments

● Warehouse in Linz •
● Deployments before EOB •
● Manufacturing partners in Europe •

9

● Users should not be disrupted by
deployment

● Devs should be able to deploy often
and on demand

We need zero downtime…

10

● Service should be highly available
● Service can be scaled horizontally

We need zero downtime…
… and multiple instances

11

03
Solution

12

● “Recreate”
● Change to “Rolling update”

Adapt Deployment strategy

Instance A Instance B

✅ ��✅⛔

13

Sounds simple
right…?

14

● Some state in process memory
● Can diverge
○ → inconsistencies
○ → nondeterministic results

But our service is stateful…

15

04
Turning service
stateless

16

Setup
AWS Elastic Container Service

Spring Boot service

MySQL
External services

MongoDB

REST

RabbitMQ

REST

17

● User sessions
● Caching
● Locks

Stateful aspects of our service

18

● Sessions are stored in process memory

User sessions - Problem

Instance A

Session

Instance B

✅

● Subsequent calls to different instances fail

⛔

19

● Sync sessions across instances
● Sticky sessions on infrastructure layer
● JWT tokens

User sessions - Solutions

20

● Sync sessions across instances
● Stored in Redis

User sessions - Decision

● Pros:
○ Sessions still exist after deployment
○ Adaptations closer to service
○ Strict control over access

21

User sessions - Implementation

spring:
session:

 store-type: redis
 data:
 redis:
 host: —--
 password: —--
 port: —--

runtimeOnly("org.springframework.session:spring-session-data-redis")

22

● Straightforward implementation
● No noticeable performance drawback
● One of the most visible changes for

users

User sessions - Conclusion

23

24

● Data cached in process memory
● Can diverge
● Instances work on different “versions”

of the data

Caching - Problems

25

● Distributed cache
● Stored in Redis

Caching - Solution

● Also keep some in memory caches
○ “Cold” or immutable data

26

Caching - Implementation

@Service
class ShipmentCreationService(

private val cache: Cache,
) {

val alreadySyncedOrderIds by cache {
 fetchAlreadySyncedOrderIds()
}

…
}

27

Caching - Implementation

@Service
class ServiceA(
 @InMemoryCache
 val inMemoryCache: Cache,
) {…}

@Service
class ServiceB(
 @RemoteCache
 private val remoteCache: Cache,
) {…}

@Qualifier
annotation class InMemoryCache
@Qualifier
annotation class RemoteCacheManager

28

● Required some configuration code
○ But simple to use and replace

● Large objects can take long to retrieve
● Highly frequently accessed data can

decrease performance
● Backwards compatibility

Caching - Conclusion

29

● Prevent that a resource is processed
concurrently
○ Shipment packing at Warehouse

● Or specific logic/service is executed
concurrently

Locks - Motivation

30

● Locks are stored in process memory
● Other instances would not know about
● Whole point of locks is lost

Locks - Problems

31

● Sync Locks across instances
● Stored in Redis

Locks - Solution

32

Locks - Implementation
fun <T> withRedissonLock(
 lockKey: String,
 action: () -> T,
): T {
 redissonClient.getFairLock(lockKey).run {
 try {
 lock()
 return action()
 } finally {

 unlock()
 }
 }
}

33

Locks - Implementation
fun <T> withRedissonLockIfAvailableOrThrow(
 lockKey: String,
 action: () -> T,
): T {
 redissonClient.getFairLock(lockKey).run {
 try {
 val lockAcquired = tryLock()

 if (lockAcquired) {
 return action()
 } else {
 throw LockNotAcquiredException(lockKey)
 }
 } finally {...}
 }
}

34

Locks - Implementation

interface LockService {
 fun <T> runWithLock(lockKey: String, action: () -> T)

: Result<T>

 fun <T> runIfKeyNotLocked(lockKey: String, action: () -> T)
: Result<T>

 fun extendObjectLock(objectId: ObjectId, pattern: String)

 fun getLockedObjectIds(pattern: String): Set<ObjectId>
}

35

Locks - Implementation

fun createShipmentsForRequestsWithoutErrorsInBulk() =
 createShipmentsInBulkLockService.withServiceLock {
 val pendingShipmentRequestsWithoutErrors =

 findOpenShipmentRequests()
 .filter { it.errors.isEmpty() }

 createShipmentsInBulk(pendingShipmentRequestsWithoutErrors)
 }

36

Locks - Implementation

fun findPendingShipments(): List<ShipmentDto> {
val lockedShipmentIds =
 shipmentLockService.getLockedObjectIds(SHIPMENT_LOCK_PATTERN)

return shipmentRepository
 .findAllByStatus(ShipmentStatus.PENDING)
 .filter { shipment -> shipment.id !in lockedShipmentIds }

}

37

● Required more custom implementation
● You should only lock keys and not objects
● No noticeable performance drawback

Locks - Conclusion

38

05
Additional topics to
consider

39

● Scheduled jobs
● REST communication
● AMQP messaging
● Backwards compatibility
● Graceful shutdown

Additional topics

40

● Batch jobs processing large sets of data
● Concurrent executions → could cause

inconsistencies

Scheduled jobs

41

● Locking the jobs
● Stored in MongoDB using “ShedLock” 1

Scheduled jobs - Solution

1 https://github.com/lukas-krecan/ShedLock

42

Scheduled jobs - Implementation

@Bean
fun mongoSchedulerLockProvider(mongoTemplate: MongoTemplate):LockProvider {
 return MongoLockProvider(mongoTemplate.db)
}

implementation("net.javacrumbs.shedlock:shedlock-spring")
runtimeOnly("net.javacrumbs.shedlock:shedlock-provider-mongo")

@Scheduled(fixedDelay = 5, timeUnit = TimeUnit.MINUTES)
@SchedulerLock(name = "SYNC_ORDERS_JOB", lockAtMostFor = "PT20M")
public void syncOrders() {...}

43

Scheduled jobs - Implementation

{
 "_id": "SHOP_SYNC_JOB",
 "lockUntil": {
 "$date": "2025-02-13T14:32:47.6189Z"
 },
 "lockedAt": {
 "$date": "2025-02-13T14:30:11.658Z"
 },
 "lockedBy": "ip-10-0-0-26.eu-central-1.compute.internal"
}

Example

44

● Straightforward implementation
● Job lock can be used to suspend jobs
● Config needs proper setup and

monitoring
○ lockAtMostFor

Scheduled jobs - Conclusion

45

● Single entry point for users
● Load Balancer
○ capable of routing traffic to

different instances

REST Load balancing / routing

46

● Publisher/Subscribe vs.
Producer/Consumer

● Message delivery to one or all
instances?

AMQP messaging models

47

● Rest APIs
● Persistence layer schema

Backwards compatibility

48

● Allow old services to finish ongoing
operations gracefully

● Reduces the risk of inconsistencies

Graceful shutdown

49

Graceful shutdown -
Implementation

server:
 shutdown: graceful
 lifecycle:
 timeout-per-shutdown-phase: 10m

50

● ECS propagates shutdown signal to
containers

● Spring service receives and initiates
shutdown

● ECS will wait until service reports
successful shutdown

Graceful shutdown - Flow

51

06
Testing

52

● Simulate traffic throughout deployment
● With load testing tool “vegeta” 1

Testing

1 https://github.com/tsenart/vegeta

53

Testing - Usage

Requests [total, rate, throughput] 50, 5.10, 5.05
Duration [total, attack, wait] 9.903s, 9.801s, 102.142ms
Latencies [min, mean, max] 96.819ms, 108.504ms, 313.981ms
Bytes In [total, mean] 840913, 16818.26
Bytes Out [total, mean] 0, 0.00
Success [ratio] 80.00%
Status Codes [code:count] 200:40, 503:10
Error Set:

echo "GET https://example.com" \
 | vegeta attack -rate=5/s -duration=10s \
 | vegeta report

54

https://docs.google.com/file/d/1RZ4FZoWxzIGPeJzEXCQ67GlG6UUHjBjk/preview

55

07
Impact

56

● No interruptions for users
● Deployments convenient for devs
● Shorter “Time-to-Production” of

features and fixes
● Fewer inconsistencies and errors

Positive impact

57

● Required backwards compatibility
complicates implementations

● Infrastructure costs

Negative impact

58

08
Outlook

59

● Extend approach to other internal services
● Split up “API-Service” and “Job-Runner”
○ individual deployment strategies
○ individual resources & scaling

Outlook

Crafting Zero-Downtime
Experiences with Stateless
Services

Deploy Without
Disruption

Now it’s the perfect
time to raise your hand
and ask a question if
you have one.

61

Q&A

